
A Class of Single-Step Methods for Systems of 
Nonlinear Differential Equations 

By G. J. Cooper 

Summary. The numerical solution of a system of nonlinear differential equations 
of arbitrary orders is considered. General implicit single-step methods are obtained 
and some convergence properties studied. 

1. Introduction. Consider a system of q nonlinear differential equations, which 
may be of different orders, 

(1.1) Yr (nr) (t) fr(t; y(t)) , r = 1(1)q, 

where 

y(t) -{ypPm) )(t)} = (((O)(t), *, **yi(n)(t); ; yq(O)(t) , yq-)(t)) 

is a point in the real Euclidean N-space RN, 

q 

N= Enr. r=l 

It is assumed that initial conditions, y(x), are given for some value, x, of the real 
variable t, and that approximations y(x + h), to the values y(x + h), are to be de- 
termined for some specified step length h. 

Let 

A i ? ari 2 rij X2 i j = 1(1)s, r = 1(1)q X = 1(1)nr, 

be a set of arbitrary bounded parameters independent of the chosen step length h. 
Introduce the additional fixed parameters uo = 0, A.+, = 1, and for a given step 
length define abscissae 

Xi = x + Ai h i = (l)s + 1,2 

and hence a closed interval (a, b), 

a= min {xi}, b= max {xi}. 
i=0(1) 8+1 i=0(1)8+1 

Now let w be a point in RN, 

W = {wpl ]} n(l[] ... w[;...;w[nq] ...W[] 
where the element wpim] of w corresponds to the element yp(np-nm)(t) of y(t). For a 
particular initial value problem we are concerned with a restricted set of points 
w E RN, and this applies also to any numerical method for determining approxima- 
tions, Y (x + h). Thus, consider a convex (finite) domain, D, of RN. We assume that 
the functions fr(t; w) are single-valued mappings of RN+1 onto R1, which satisfy 
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the Lipschitz conditions, 

(1.2) 1f7(t;w') -fr(t;w")! < Ljjw' - w", r = M(l)q, 
for any pair of values w', w" E D, and any t in (a, b). Here L is a positive constant 
and /lwjl, w E D, denotes the norm, 

liwli = max Iw[m]I| p = 1(1)q, m = 1(1)np. 
p,m 

Then the initial-value problem has a unique solution in (a, b) [1]. It is further as- 
sumed that for some nonnegative integer, p, the derivatives 

,(nr+-P), r = 1(l)qX 

are continuous in (a, b). From now on we restrict attention to problems satisfying 
these various conditions. 

Definition (1.1). For r = 1(1)q, v = 1(1)nr, define 
v-1r 

Tr[] (Ai h) = . (i h) T (n-v+,) (X) + 1 
r=0 

r! 
kri(h) = fr(xi; {1km](h)}), i = l(1)s, 

where 

k[Y](h) = Tr[;] (Ai h) + ( _[;rkrj(h), i = 1 (1)s. 

Then an s stage single-step process which provides approximations to y(x + h), may be 
defined by 

P (nr-P)(x + h) = TrI] (h) + hp a'x%Thri(h), r = 1(1)q, v = 1(1)nr. 

This defines a class of methods. We consider subclasses defined by restraints imposed on 
the allowed parameter values. 

This definition is a simple extension of the standard process of Runge-Kutta 
type [2] along the lines developed by Zurmiihl [3]. There are some minor modifica- 
tions which appear to lead to somewhat simpler formulae and which indicate the 
nature of the process. Indeed, we can define 

(1.3) x?8+1 j = aer,, r = 1(1)q, v = 1(1)nr, j = 1(1)s. 
In a previous article this single-step process was examined for a single linear 

differential equation of order n and the results obtained there suggested the present 
approach [4]. For explicit methods, where 

x[].Q = 0, j > i i,j = (1)s , r = 1(1)q, p = 1(1)nr, 

thedetermination of the functions kri(h), i = 1(1)s, r = 1(1)q, presents no particular 
difficulty, since we have merely to evaluate the functions fr(t; w), r = 1(1)q, for a 
sequence of known values of t and w. For implicit processes, however, the functions 
have, in general, to be evaluated by iterative techniques. 

Definition (1.2). Let 
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rnr-v nv 
Ayr(nrv) (h) = [yr(x) (x + h) - Tr[p](h)] , r = 1(1)q, v = 1(1)nr, 

iv, v!(r-v)! 

Consider a subclass of methods. If there exist a positive constant Y and a nonnegative 
integer p such that for each method, 

E[Y] (h) AYr (h) - % (nr) ? a[Pk7i(h) < Ylhj"', 

r = l (l)q, v= (1)nr, 

holds for all sufficiently small h, then the subclass is said to be of order p. Alternatively 
we write 

Etr] (h) = O (e r+p) 

We state conditions which restrict the allowed values of the parameters of an s 
stage process and show that these conditions are sufficient for this subclass of 
methods to be of order p. In a series of articles [5], [6], [7], Butcher has examined a 
single-step process of this type for a system of first-order equations. The conditions 
obtained here reduce to some particular results obtained by Butcher, which give 
implicit methods. On the other hand our present approach is more general in that a 
system of equations of arbitrary orders is considered and the independent variable 
may enter explicitly into the functional forms. 

The present approach leads naturally to a discussion of convergence and error 
bounds. Again for a system of first-order equations, Butcher has dealt with the con- 
vergence and stability of single- and multi-step methods in a general context [8]. 
Our results illustrate clearly the connection between single- and multi-step methods, 
and the techniques used provide a useful approach to various problems of conver- 
gence and error estimation. 

2. Parameter Constraints. The following elementary result is the basis of sub- 
sequent developments. 

LEMMA (2.1). If 

(2.1) =E j 

r = 1(1)q, v = 1(1)nr, i = 1(1)s, r = O(1)p - -1, then 

Yr (nr-v) (x i) = Tr 
[PI 

(,L h) + (MjhP 
8 

l~ r(r (xj) + h 

where for p > v, 

i/4P] 
(h) = h! [ 0 

P-t-) 
(x + 0viih) - p 

8 1 

X 
E A -iy y[PI (nre-v) (x + 0'1/LAj h) 

j=l 
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and for p <_ v, 

(Ii)(nr+P-P)(- (/i ih) n(+T) (i-h) 
[r (h) Yr (X + Oiaih) - (yr ) 

- 

X E Ar*j(nr) (Xj) O < oly) 01?1 < 
j=l 

Proof. Since the derivatives, yr(p)(t), r = 1(1)q, p = 0(1)nr + p, are assumed 
continuous in (a, b), Taylor's theorem, with Lagrange's remainder form, gives 

yr(nr-Y) (X i) = Y ( rih) ynr-y+T) (x) + ( Y rh) y(nr-+P)(x + o 'P2y ih) 

0 < Ovl < 1, i = 1(1)s, r = 1(1)q, ' = 0(1)nr. The result follows on applying Eqs. 
(2.1) and Definition (1.1). 

It is convenient to collect together some notation. 
Definition (2.1). For r = 1(1)q, v = 1(1)nr, i, = 1(1)s, define positive elements, 

fri = lyr()(xi) - kri(h)l , ei = max {Eri} 

MX 
r 

zi= max L (h) = max i 

r,v 
z 

nv 
=mxl 

rAs]j| Z =max {zxj} 

The following theorem is the fundamental result of this article. 
THEOREM (2.1). If Eqs. (2.1) are satisfied then 

k1i(h) = yr (nr)(xi) + O(hf) 

and for z < 1/2s, ei < 21/, r = 1(1)q, i = 1(1)s. 
Proof. From Definition (1.1) and Eq. (1.1), we obtain, on applying the Lipschitz 

conditions (1.2) and Lemma (2.1), 

fr(nr)(xi) - kri(h)l < max Lip['ws(h) + (ith) Li pXt' 1y (nP) (xi)-- kpj(h)} 
pm m! j16- p $ p 

r, p = 1(1)q, m = 1(1)np, i = 1(1)s. 

Then Definition (2.1) gives 

c i < 4"i + Zsjjj i-(l)s. 
j=l 

This may be regarded as a matrix inequality, 

(I-Z)Z <tt 

tT = 
(Ely f s) y 

1t T = N1* 2 ... ) 2 

Here I is the identity matrix and Z is the s X s square matrix with elements zij, 
i, j = 1(1)s. Since the parameters of the single-step process are assumed to be 
bounded and independent of h, these elements may be made arbitrarily small by4a 
suitable choice of the step length. Thus for all sufficiently small h, 
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(2.2) 1-,zii > ? i = 1 (l)s, 
j=l 

and the matrix I - Z is monotonic. In particular, the solution of the matrix equation 

(I - Z)E*E*T = (El*, es8), 

is then such that e>* > j, i = 1(1)s, [9, pp. 43-47]. Now the elements zij are positive, 
and so it follows from (2.2) that all the eigenvalues of Z are of modulus less than 
unity and hence that the inverse matrix of I - Z is given by 

co 

(I _ z)-1 Ezr Z?-I 

the infinite series converging [10]. This series is majorized by 

I + [- (sz)] J 

where J is the s X s matrix with all elements unity. For sufficiently small h, sz < 1 
and the geometric progression may be summed. Since the elements of 1* are positive 
we thus obtain 

_ - + z i 1 (1)s, 

for sufficiently small h. For h so small that 

z <-- e2?2 i= - 2s' , (1)s, 

and since 4/ = O(hP), this completes the proof. 
The techniques used here are described by Collatz [9, pp. 109-110]. The theoremA 

may be proved by more elementary means, but the present proof appears capable of 
refinement, leading to less restrictive bounds on the step length. 

THEOREM (2.2). For an s stage single-step method to be of order p it is sufficient 
that Eqs. (2.1) and the following equations are satisfied, 

(2.3) 1 =(+A )?iE r[v] r= 1(1)q, v= 1(1)nr, T 0(1)p - 1 . 

Proof. It has to be shown that 

Et (h) = O(hr+P) , r M(1)q, r = 1(1)fr. 

From Definition (1.2) and Taylor's theorem, 

Ayr(nr-P) (h) 
1 ( nr + Tr h__ Y (1rr) (x) 

7= nr - P (nr + r)! Y x 

+(nr + p ) hnr 
P 

nr+P(x+Alh) 

0 < Or[P < 1 r = 1(1)q, v = 1(1)nr. 

Taylor's theorem and Eqs. (2.3) give 
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+ rt )! tni ) = 
i n -v ) (n, + r)! Yr (x+ 

nr 7=0 n(nr 

(nr - ) (nr + P) ! (p )- E 1 a^?r8ip)( ?]sh 

O < O 21 < 1 r = 1(1)q, p = 1 (1)nr, i -(l)s 

and so from Definition (2.1), 

,,[3()< ihn(8 arli t r v)(.+p 

X Yr (r+P) (x + O7[P]h) - + p) P [P]EVi (nr+P) (x + O'O3xuh) 

From Theorem (2.1), E 0 = O(hp), and so this theorem is proved. 
Since a bound was obtained for the elements, fri, in Theorem (2.1), this proof 

providesboundsfor the errorsy,&()(x + h) - r,(P)(x + h), r = 1(1)q, v = 0(1)n, - 1. 
These bounds will usually be poor estimates and in any case only apply for a re- 
stricted range of permissible values of h. By refining the Lipschitz conditions and the 
argument of Theorem (2.1), these bounds can be relaxed. 

Theorem (2.2) provides a subclass of implicit methods. Thus the equations de- 
fining kji(h), r = 1(1)q, i = 1(1)s, (Definition (1.1)) have in general to be solved 
iteratively. The functions fr(t; w), r = 1(1)q, may be regarded as mappings, in a 
complete metric space, which satisfy Lipschitz conditions, and it is a consequence 
that for sufficiently small h these equations have a unique solution which may be 
determined iteratively [11]. Define 'iterates', 

k4'rp'i](h) T TrN](uih) + (Aih)p E X[r>j k(rr) (h)X i = 1(1)s, r = 1(1)q, 

V = 1 (1)n, } T 01 1 

Then a possible iterative procedure is 

k(`+'(h) = fr(xi; {I47rJ}) , i = 1(1)s, r = 1(1)q, r = 0, 1 

Incidentally, Theorem (2.1) suggests starting values, 

k(rT (h) = yr(nr)(X) , i = 1(1)s, r = 1(1)q. 

An interesting feature of the derivation of these implicit methods is that no assump- 
tions are required concerning the derivatives of fr(t; w), r = 1(1)q, except at the 
point w = y. 

Equations (2.3) relate these implicit methods to quadrature methods, for 

(2.4) fT(1r )V-d 1 f - a . 

Since kri(h) = yr(nr) (Xi) + O(hP), we have (apart from error terms) 
[1 8 

~~~~~~~~a~,rn) X) 
18 

Y yr("r)(x + ,Ah) (1 - A)d - ! a[]yr(nr)(xi) = - E a'j1kr(h) 

and integration by parts gives 
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t (nr ) = hnr (nr) E a[]y (nr)(xj) 

Exact results are thus obtained if the solutions Yr(0)(x + ,uh), r = 1(1)q, are poly- 
nomials in ,u of degree less than p. For then the error terms vanish (Lemma (2.1)). 

In a previous article [4] the solution of equations of the type (2.1), (2.3), was con- 
sidered. It was pointed out that, by selecting distinct abscissae, ,uI, i = 1(1)s, the 
other parameters can be determined by solving sets of matrix equations, with the 
same matrix of coefficients, to give methods of order at least p = s. It is convenient 
to only consider parameters independent of r. As described in [4], Theorem (2.1) 
and Lemma (2.1) provide ways to automatically estimate the error. Thus it seems 
possible to fully automate a procedure for solving an arbitrary system of nonlinear 
differential equations. 

By choosing as abscissae the zeros of the Legendre polynomial P8(2,s - 1), Eqs. 
(2.4) and hence (2.3), can be satisfied for p = 2s + 1 - n, n = max {Inr}, and thus 
the maximum attainable order of these implicit processes is pmax < 2s + 1 -n 
s _ n, [4]. It seems likely that the maximum order can be attained and this can 
certainly be achieved when s ? n. Indeed, Butcher has shown that this is so gener- 
ally for a system of first-order equations [7]. It appears that we can do rather better 
than this if we only wish to compute some of the values ,r(;)(x + h). Thus if we 
have only to determine the values yr(0)(x + h), r = 1(1)q, Eqs. (2.4) need only be 
satisfied for v = nr. Assume that nr = n, r = 1(1)q. Then by taking as abscissae 
the zeros of the orthogonal polynomial of degree s, associated with the weight func- 
tion (1 -,un- and the interval (0, 1), we have pmax ? 28. 

For methods of maximum order Eqs. (2.1) are not generally satisfied with 
p = Pmax. Indeed, p ? s + 1 and a more detailed analysis is required. 

3. A Convergence Problem. A rather unusual type of convergence (for single- 
step methods) is examined here. A single step of fixed length h is considered and 
conditions obtained such that 

lim E's'r(h) = O, r = 1(1)q, v = 1(1)nr. 

It is not clear, however, whether these conditions can be met. 
Definition (3.1). For r = 1(1)q, v = l(l)fnr, i,j = 1(1)s, define for all s, 

u= max |Iil, u= max {A}, 
i8 

a = max ja"ff, X = max 1XlIjVI 
r,v, i r,v,it,j 

where ,u, a, X, depend on s. 
Consider implicit methods of the type derived in Section 2. Let c be a fixed posi- 

tive constant. We assume that there exists a sequence of methods of increasing order 
p, s _ cp, such that 

(i) ,u is bounded, 
(ii) there exist constants, a* > 1, X, so that for all s, a _ (a*),, X < X/s. 
We further assume that 
(iii) for some constant w, co> _, and all p, 
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Y ,PI() c/p, r = 1(1)q, t E (a, b) 

The interval (a, b) depends on the step length h and is finite, so that this bound is 
not severe. Indeed, the only bound that is difficult to satisfy is that on X. For Eqs. 
(2.1), with r = 0, give X ? 1/s. As previously remarked, we can readily obtain 
sequences of methods of increasing order p ? s (O < c ? 1). 

THEOREM (3.1). Assume that there exists a sequence of methods of increasing order 
p, s < cp, such that (i), (ii) are satisfied. For a step length h such that 

1 > 2LXAIhIe lIhlI 

and such that the bounds (iii) are satisfied, 

li ,r^ (h) = O, r = 1 (1)q, V=1 l8 

Proof. From Definition (2.1) the bound on h gives z _ 1/2s, so that the analysis 
of Theorem (2.1) applies and et < 2Ak, i = 1(1)s. Thus from the proof of Theorem 
(2.2) and Lemma (2.1), 

E[P] < corp = ph 
I n r+1 

wn+ [1 + c (up)PI{1 + 2L (l + A)) }] 
= =(p n)! [ 

for p > n, n = max {nr}, cZ = (a*)c. For all sufficiently large p, 

wr,p+l < dWrpD d < 1 

and the required result follows. 
Here the bound on X depends on that for z and, although the results of Theorem 

(2.1) can be sharpened, the dependence on s seems essential. It seems unlikely that 
such sequences of methods can be obtained. We have not shown that other sequences 
of methods do not converge. 

4. Stability and Convergence. Here we treat the problem of stability and the 
related (conventional) convergence problem. Consider a fixed step length, H. We 
wish to determine approximations, Pr( )(X) + H), to the values yr(c)(X' + H), r = 
1(1)q, v = 0(1)nr -1, by applying a particular single-step method to a sequence of 
subintervals of (0, H). Thus, the errors at x' + H will be due to the accumulation of 
truncation errors from step to step. 

Definition (4.1). Define abscissae, 

xpi = xpo + 1.ih, i = 0(1)s + 1, p = 0(1)M -1, 

Xoo = Xi Xp,,+1 = Xp+1,O 0 XMo = X' + H, Mh = H. 

Further define, for r = 1 (1)q, 'initial value approximations', 

Yr (XpO) = Yr ()(XP0) - flrpI, p = 0(1)M, Y' = 0(1)nr- 1 

v) 
1 

= Ai h)Tr (n Tr"" (Aihy p) =Y 
E 

(y)Yr (r-V+T)(X 
) P = 0(1)M -1 

V = 1(1)nr. 
Let rp = maxr,c 'i1]l p = 0(1)M. 

We consider a selected method of order p of the type described in Section 2. To 
derive these methods we have assumed that the derivatives, 
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Yr+P) (t) , r = 1 (1)q, 

are continuous in a closed interval (a, b) defined with respect to the step length h and 
the abscissae ,u , i = 1 (1)s. We thus require that there exists a constant -y such that 

|Y r( (t) |<y, r = l1(1)q, p = 0(1)nr + P, 

for t E (a, b) for a sequence of intervals (a, b) corresponding to the selected x,o. 
LEMMA (4.1). If A, B, are positive constants independent of p, such that for some 

positive integer M 

77,+1 < AIM + (1 + B/M)rl,, p = 0 (1)M -1, 

then 

77M < [AIB + 77ole. 

Proof. For any value of p, p = 0(1)M - 1, 

(4.1) 7~~~p+l < ME (1 +-M + (1 + M 

For, this relation holds for p = 0. Assume it holds for some value of p, 0 < p < M 
- 1. Then 

71p+2 _ A/M + (1 + B/M)77p+1, 

and inserting (4.1) we obtain 

71p+2 <- + 1+ M) 0? 

This completes an inductive proof of (4.1). Thus putting p = M - 1 in (4.1) and 
summing the geometric progression we obtain 

nM < [A/B + -qo](1 + B/M)M. 

Now eB IM > 1 + B/M, completing the proof. 
THEOREM (4. 1). If, for the method selected, z < 1/2s, and if for each step the initial 

values used, yr(^) (x,o), are the approximations obtained from the previous step, 

r) (x,,,o + h) , r = 1(1)q, V = 0(1)nr - 1, p = 1(1)M- 1, 

then for lhi < 1, p > n, n = max {nr}, 

jyr(P)(x' + H) y(x)(' + H)I < [A/B + Jo]eB, 

A h I P/ (p - n)!) IH'y[1 + 3saAiP + 2S2aX,1Y], B = IHI (e ,h + 2Lsae [hi 

Proof. For some value of p let x = xpo. To step from x to x + h we apply a single- 
step method as given in Definition (1.1), but with T, i] (Ai h, p) replacing Tr["' (Iii h), 
i = 1(1)s + 1, r = 1(1)q, v = 1(1)nr. From Lemma (2.1) we have 

Yr (xp*) Tr (pAh, p) + (VIh)' Xr3y Y Xr 

I 7r1 (h, i h)'O [nrr-l+r] 
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i = 1(1)s, r= (1)q,= 1(1)nr. For z _ 1/2s, Theorem (2.1) carries over, and using 
Definition (3.1) 

fri _ ? 2 + 2eh Lp, 
and from Lemma (2.1) we obtain for p > n, 

(4.2) 'Eri _ Ei <? I (hp -)! (1 + sA) + 2e ShiLjp . 

We have 

r,pl= 
y (rJ)(x + h) - (r-) (x + h) 

= Yr(nr-v) (X + h) _- h a?r - Tr[l] (h) 
V-1~~~~~~~~~ 

+ v_1 n hr-+ hv s 
v nr X + Z'r!y11rr + V a{yr(tT)(Xpr ) - kri(h)} 

Proceeding as in the proof of Theorem (2.2) we obtain 

[nr-J'] h FYp (n r+V)(X+o~) ( + P ' [1i P (n r+P) (~~O 
?7r,p+l (Vr (Z + Or[p])h) - (x + !ri h) 

(4.3) v_1 t V - 

+ h [nr-J'+] + h n a r){(Xr)p 

Since this relation holds for r = 1(1)q, v = 1(1)nr, we have for Ihl < 1, 
s 

'1 hlP+ ? - (1 + scqt) +ms(l + Ihle ) h a + fhja . 

Thus, for p > n, IhI < 1 p = 0(1)M - 1, 

?7+1 = (p n [1 + 3saMup + 2s2aXu] + mp[l + IhI (e hI + 2Lsaeulhl)I 

Since Mlhl = IHj Lemma (4.1) can be applied to complete the proof. 
The result can be easily extended and refined. Thus the restrictions p > n, IhJ < 

1, are not necessary. Different step lengths hp, p = 0(1)M - 1, can be considered 

and methods of differing orders applied. The essential restriction is z < 1/2s, and for 

sufficiently large M this can always be achieved. 

COROLLARY. 

lim flM _ lim 
A 

+ 7o]e , Mlhl = IHI. 

Thus, if 7lo = 0 (exact initial conditions), the step-by-step procedure converges to the 

exact result as M increases. Again the restrictions are unnecessary, though for differ- 

ing step lengths we require 

lim hp = O, p = O(1)M -1. 

The theorem provides bounds on the errors at x' + H and can thus be interpreted 
as a stability criterion for fixed M. It does not provide a bound for z > 1/2s. 



SYSTEMS OF NONLINEAR DIFFERENTIAL EQUATIONS 607 

5. Multi-Step and Mixed Methods. Theorem (2.1) provides a connection with 
multi-step methods and various methods of mixed type. We can use intervals (x, x 
+ h) which contain points already integrated or we can use some negative values for 
the parameters ,A , i = 1(1)s. The theorem then provides approximations to the 
functions ki(h), r = 1(1)q, at these points. 

As a simple example we consider a three-stage method of order p = 3, applicable 
to an arbitrary system of differential equations of the form (1.1). We use the nota- 
tion of Section 4 and consider stepping from x' to x' + H using M equal subdivisions 
of length h. It is assumed that some special starting method has already given ade- 
quate approximations y(x + h). 

To step from x, O to xp+ 0,o p = (1)M - 1, we take 

l1 = -1, .2 = 0, /.3 = 1. 

Then a particular choice of parameters, which satisfies Eqs. (2.1), (2.3), with p = 3 is 

Iv1 -v [p] 2v(v + 3) =0 v + 4 
arl2+1(2) Xr2 2(1)(2) ar3= 

?tl=2(v + 1)(P + 2) 2(v, + l) (v + 2) 2(v + l) (v + 2) 

ril= -+ ri2 - 
+ 1 ri 

for r = l()q, v = (1)fnr, i = 1, 2, 3. Definition (1.1) now gives a method for step- 
ping ahead. We insert the additional parameter, p, to refer to the current step, and 
obtain, 

Tr"" (A h p) = E (,h) yO(n Yr +T)(xpo) , i = 1(l)s + 1, 
-=0 v.! 

kri (h, p) = Tr[ 1 (Aih, p) + ( _.s+h)! [(2 -i)kri(h, p) + (v + i - 1)kr2(h, p)] rlt ~~~~~(v + 1)! 
k, i(h, p) =fr (xpi; kIn.l](h p)~ ... k"l] (h2 p); *;k"~l (h, p),. k'l] (h p) 

r= 1(l)q, v= 1(1)nr, i= 1,2,3 

We now have 

7 )(xp+,,o) = Tr[;,] (h2 P) + 2( + v2 [-kri(h, p) + 2v' (v + 3)kr2(h, p) y ~ = ~r~1(h, P) 
+2(v + 2)!. 

+ (' + 4)kr3(h p)] I 

Y(nr-P)( )_- (nr-P) (xp 1i o) = 0 (h nr+3-P) y r (xP+1,0) -r + (nd3 

Theorem (2.1) gives 

kri(h, p) = kr,i+1(h, p- 1) + 0(h3) i = 1, 2, 

and we thus have excellent starting values for an iterative determination of the 
functions kri (h, p). The analysis of Section 4 still applies. If we proceed in this 
fashion we have a method of predictor-corrector type. On the other hand, we can 
accept these estimates as adequate and immediately obtain kr3(p, h) which is de- 
fined explicitly. The analysis of Section 4 does not apply and we have a method of 
linear multi-step type. We can, of course, use the method also to obtain the starting 
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values. But now the functions kri(h, 1) must be determined iteratively. 
An alternative procedure is to step from x,,i,o to xp+0,o p = 1(1)M - 1, steps of 

length 2h, with Al = 0, A2 = 2, A3 = 1. Higher-order methods can likewise be ob- 
tained. 

6. The Definition of Order. Definition (1.2) implies that the Taylor series ex- 
pansions of y,(")(x + h), 9r00(x + h), agree up to, but not including, terms of 
O(hnr+P-,), r = 1(1)q, v = 0(1)nr - 1. This definition leads to Eqs. (2.1), (2.3), 
which give implicit methods of arbitrary order p. We observe that (2.1) may be 
solved for all v, in terms of a solution for v = 1, by the conditions 

(6.1) Xr^+.l1 = (v + 1)[1 - Aj1Ari Xr j i ? # 0, 

i,j = 1(1)s ,r= 1(1)q ,= 1(1)nr - 1. 

It may appear more natural to define order by the requirement, 

Esrl(h) = O(hnr+PP-) , r = 1(l)q, = 1(1)nr, 

whence the expansions of y,(^)(x + h), jr(^)(x + h), agree up to, but excluding, 
terms of O(h'). For then, using (1.3), the resulting parameter constraints can be 
written as a single set of equations, 

t (V + T) E U i = 1(1)s + 1, r =1(1)q, 

v = 1(1)nr, T = O(l)p- -1. 

The solution (6.1) can now be extended to cover the case i = s + 1. 
However, the additional constraints in (2.3) give more accurate values for the 

lower-order derivatives. In either case Theorem (2.1) holds and we further have, 

k'ra (h) = y (nr-Y)(Xi) + O(hp) - = 1(1)nr, 

an extra aid for error estimatioil. 

7. Systems of First-Order Equations. It is sometimes stated that it is adequate 
to treat an equation of order n as a system of n first-order equations. We show here 
that this results in a decrease of local accuracy and an increase in computation. The 
final accuracy, after a number of steps, appears to be unimpaired. Consider the 
single equation 

(7.1) Y(n) (t) = f (t; y(?) (t) . . n,l) (t))X 

which may be replaced by the system, 

(7.2) y,~n (t) = fn(t; yi(t), *.*, yn(t)) 

Yr (t) = fr(Yr+1(t)) = yr+l(t) , r = 1(1)n - 1 

Equations (2.1), (2.3), provide an s stage method of order p for both (7.1) and 
(7.2). Additional work is required to obtain the parameters for (7.1) but this can be 
reduced by using (6.1). Consider applying the method for a single step. To solve 
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(7.1) we need to evaluate s functions ki(h), i = 1(1)s. To solve (7.2) we have in 
general to evaluate kri(h), r = 1(1)n, i = 1(1)s. If, however, we make use of the 
particular properties of the system, these functions can all be expressed in terms of 
kni,(h), i = 1(1)s. Nevertheless, the organization required is appreciable, and the re- 
sulting s equations do not in general have as simple a structure. When we solve (7.1) 
we are in effect solving the system (7.2) using a special sequence of different methods, 
which give an over-all simple structure. 

Furthermore, this special sequence uses all the available initial terms of the 
Taylor series expansion. Thus solving (7.1) gives 

y(p) (x + h)-y (x + h) = 0 (hn+p-p) X = 0(l)n -1, 

whereas the solution of (7.2) gives 

y,+i(x + h) - r+(x + h) = y(p)(x + h) - ^(x + h) = O(hp+') 

That is, the local accuracy is better, for v small, if the equation is treated intact. 
We now consider applying our method to a sequence of intervals as in Section 4. 

Although the proof of Theorem (4.1) is crude, the result indicates that the order of 
the global accuracy does not depend on which way the equation is treated. We ex- 
amine this a little more closely. From (4.2), (4.3), and the result of the theorem we 
obtain 

(7.3) |wr p+l |< pjhj| + E !rp 

and we assume that 

I_ j < r|h| ", r = l(l)q, v' = 1(1l)n, p = O(1)M - 1 

Here c, r, are constants independent of v, p. Repeated application of (7.3) gives 

rp 'I 
< jhlp+j(p + ')P-y[(p + V)+p + r], 

and this can be established by induction. If we now take p = M, we have since Mh 
= H, 

7 Z" ]= 0 (hP). 

This is essentially the same result as that of Theorem (4.1). Thus if the number of 
steps is O(lh -1), it is immaterial which way the equation is solved, at least from the 
viewpoint of final accuracy achieved [12]. 

The remarks of this and the previous section require modification if methods 
of maximum order are considered. 
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